人工智能李德毅AI人类社会发展的加

复方卡力孜然酊的价格是多少 http://pf.39.net/bdfyy/bdfyc/140813/4447651.html

10月12日,第七届中国智能产业高峰论坛在佛山开幕,在第一天的主论坛上,中国人工智能学会理事长、中国工程院院士李德毅发表了主题为《AI:人类社会发展的加速器》的精彩演讲。

在报告中,李德毅院士分析了人工智能与智能科学技术的区别与联系,深刻讲解了人工智能的内涵与外延。通过各种具体的事例为与会嘉宾详细介绍了人工智能是如何以润物无声改变整个世界的。

中国人工智能学会理事长、中国工程院院士李德毅

以下是李德毅院士的大会致辞+演讲实录。

李德毅:各位嘉宾、各位同行、各位朋友,大家早上好!

非常高兴和大家相聚在广东四小虎之一的顺德,第七届中国智能产业高峰论坛今天将在这里举行开幕,将在一起进行人工智能领域的思想碰撞。

我们经历了年庆祝全球人工智能60年的重大的活动,我们也经历了年论证智能科学与技术作为一级学科的艰苦,今天我们迎来了中国人工智能的春天,国务院发表了《新一代人工智能发展规划》,在这样一个形势下我们中国智能产业高峰论坛已经成功举办了第六届。

这样一个论坛是中国人工智能技术和产业领域规模和影响力都是比较高的一个高峰论坛,我们要把它办成一个品牌。顺德自古经济发达、商业繁荣、文教鼎盛,人工智能领域也有很好的基础,在天时地利人和的大环境下,我们第七届人工智能产业高峰论坛定位于创新、协调、绿色、开放、共享,为众多的人工智能学界和产业届的智能人工学者、专家和精英设置了六个人工智能细分领域的专题论坛,学会还将中国科协第期的新观点、新学说沙龙掺杂在本次高峰论坛期间,想通过本次高峰论坛最大程度的推动学术和产业的发展。

时来天地皆同力,人工智能正经历着前所未有的天地同力的发展顺境,中国人工智能正以前所未有的速度与力量,成为全球新一轮科技革命和产业变革的核心驱动力,中国人工智能的实力也正在被全世界所瞩目,在历史的机遇面前,我们对中国人工智能的发展充满着信心,也准备迎难而上,接受挑战,创造未来。

谢谢大家!

李德毅:各位我讲一讲最近我们关于人工智能的思考。我在准备这个报告先讲了一个题目,叫做《AI——新经济发展的新引擎》。因为我觉得新经济、新工艺、新工科,人工智能是一个新引擎。昨天吃饭的时候听说美的把库卡买下来了,成了库卡公司的最大股东,我很振奋,因为在工业机器人上我们远远不如德国。但是今天我们看人工智能、看机器人,我们提出了除了工业机器人,还有农业机器人,还有服务机器人,还有医疗和康健机器人等等,吃饭的时候大家议论说美的把库卡买下来了,是中国人聪明,还是德国人聪明,最后大家的结论是,中国人聪明,德国人也聪明,并不是德国人不聪明。所以我在想人工智能作为新经济、新引擎的同时按,还有一个更重要的作用,就是对全社会发展的加速器作用。我今天报告的题目是《AI——人类社会发展的加速器》。

一、  人工智能60年

年阿尔法狗战胜了人类冠军,回顾年达根摩斯会议走过了这么多个年头,我们额外怀念那些为人工智能做出积极贡献的科学家、工程师们,人工智能从跌跌爬爬到奔跑,到现在快速奔跑,已经对世界经济人类社会和社会进步产生了积极、深刻的影响,我们已经可以更加充满前进的勇气去拥抱人工智能的新时代。当我们看到麦卡锡等人在大会上的照片的时候,当我们回顾“人工智能之父”图灵在36年写的文章、在56年写的文章,看到麦卡锡、哈德西蒙等图灵奖获得者,我们发现对技术贡献大的很多科学家都对人工智能有很大的贡献。

人工智能经过了两个严寒的冬天,经历第三次潮起,已经由光网宽带、移动互联网、云计算、互联网、大数据把人工智能推到了风口。科学技术的发展就是人类认识世界、改造世界的一个过程,是人类劳动工具的发展史。工业机器人在工厂里面代替了人的工作,当初我们把它叫做机械手,它还是一个体力的象征。随着人类从农耕社会到工业社会到信息社会,今天已经可以用智能作为当今社会的标签,已经进入到了工程动力技术上发展智能工程的新阶段。如果说农耕社会和工业社会人类的生产工具主要是基于获得能量的话,今天我们要想创造更多的价值,我们的一个新的增长点就是在数据、信息、知识、价值或智能,智能的红利到来了,所以现在人工智能的工程师拿的工资比较高,就是这个道理。

围棋脑

我们回忆一下,这60年如果找两个典型代表,我想了半天,我想这两个可以拿来讨论一下。第一个就是围棋,或者说阿尔法狗程序,充其量把它叫做围棋脑。

我们看一下阿尔法狗版本升级的过程。年10月,第13版本胜樊默二段,不到一年第18版本胜了李世石,4:1,到了年12月胜了人类60个高手,到了17年5月版本打败了柯洁,3:0,人类终于服气了,就像当初我们终于服气了拖拉机力量比一个人的力量大,所以大家现在也坦然了,我们人类发明的机器人在智能上某一个领域超过人应该是一个常态,无须大惊小怪。

我们看看李世石这样一个人类的棋手升级的速度,他9岁学棋,12岁入段,15到16岁进入二段、三段,到20岁升为六段,后来在比赛中胜了韩国的冠亚军,并夺得了第16界的富士通杯的冠军,20岁升为九段。从9岁到20岁花了十多年才变成九段棋手。但是阿尔法狗每一年都在跳,2年就行了。

我们再看看柯洁。柯洁5岁学棋,到18岁拿下三大杯的冠军,用了十多年,这告诉大家一个什么问题呢?告诉我们围棋脑自向进化的速度比一个生物人自向进化的速度要快。随着围棋空间的扩大,围棋脑和围棋手谁升得更快呢?我查了一下围棋的历史,考古学家发现,围棋一开始的棋盘很小,10×10,后来经历了12×12、13×13、15×15、17×17,从唐代开始,唐宋明清到现在都用19×19的棋盘,我们还是在学习,一开始学5×5棋盘,然后搞了一个9×9的棋盘。从唐代开始,唐宋明清一直搞,大家觉得人的智商对于这样的围棋空间大概已经够厉害了,所以19×19的棋盘就冻结了。

人工智能的力量会有多大?假如现在我们把空间再大一点,改成21×21的棋盘,我们想问一个问题,随着围棋空间的扩大,机器做的围棋脑和生物人的围棋手谁适应得更快?围棋高手都知道,19×19的空间即二维乘二维的空间在程序里面大概改一个参变量就可以了,所以我相信21×21乃至更大的棋盘,37×37,把棋盘翻一番,阿尔法狗的潜力还大。所以不仅要看到今天阿尔法狗胜了,还要看到如果棋盘空间扩大以后,一个人的思维空间是远远不够的。这时候怎么办?唐宋明清4个朝代一千多年了棋盘都扩大不了,但是对于阿尔法狗来说扩大一点不是那么费力,这是一个问题的方面。

再看另外一个方面,如果我们把阿尔法狗程序和象棋程序放在一个机器上,让它同时战胜人类的围棋冠军和国际象棋冠军,我认为这个难度不是很大,我们的高性能计算机以用更多服务器、更多网络来支撑,但是要是把一个生物人让他同时成为围棋冠军,又成为国际象棋冠军,何其难也。因此,我得到一个重要结论,为什么说新经济、新引擎?围棋脑版本的升级速度会远大于围棋手段位的进化速度,会远大于围棋人的自然进化速度。还有一个结论就是,群体智能的围棋脑。因为现在的阿尔法狗能够战胜60个围棋手,已经不是一个人智慧,远远大于单个生物脑围棋的智能,高明的围棋手与阿尔法狗下棋没有意义了,不平等。

驾驶脑

下面再看另外一个例子,驾驶脑。现在无人驾驶全世界风靡一时,不但搞汽车的人做,搞人工智能在做,全世界的工程师都在做,任正非、董明珠、阿里巴巴都要涉足无人驾驶,什么原因?因为它是一个“人工智能之母”。这个提法我也是刚刚学到,我以前知道“人工智能之父”是图灵,结果我听说无人驾驶是“人工智能之母”什么道理?他说车辆里面有很多传感器,能够产生大数据,能为人工智能,所以它是“人工智能之母”,因此人工智能这个平台是“人工智能之母”,我觉得好象也有一点道理。我们看看人类司机,我们看一个司机的驾驶技能是怎么进展的。我们可以把一个司机分为几个阶段,一开始考驾照,必须有驾照才能上路,这是底线。其次刚刚拿到驾照的时候驾驶技巧很差,后来经过一两年的“菜鸟期”,经过三四年的成熟期,终于你开了1万多公里,终于技巧积累比较多,于是最后你变成一个老司机,大概要三四万公里以上。一个自然人对驾驶技术积累是这样一个过程。

无人驾驶呢?我们看一下无人驾驶的过程。无人驾驶无论是自动驾驶,还是自主驾驶,昨天我跟德国一个专家在一起讨论,他认为自动化和智能化是两回事,我说这个事情在中国的文化里面比较难讲清楚,但是驾驶脑版本的升级速度远大于人类驾驶员驾驶的进化速度,我想这一点大家是会同意的。体现群体智能的驾驶脑的环境适应能力远大于单个驾驶人特定场景的适应能力。如果你用我的团队的无人驾驶车,在广东开车,让熟悉佛山的地理、地形,突然又把他调到深圳去开,在我那里只要把地图换掉,很快这辆车就可以变成深圳的马路通。但是对于一个人来说,你熟悉了佛山不等于熟悉了深圳,所以我用这个围棋脑和驾驶脑告诉大家一件事情,这就是我的结论,工具从来都有两面性,对科学、对人工智能要有敬畏之心,不要老是以为你是弱智能,我是强智能,不是这样子的,机器有时候做得比人还好。我这一次来的时候,在首都机场晚到了几十分钟,我亲眼看到一个人开的汽车追尾了前面一辆车,我就思考,得出一个重要结论,人类对人犯错误的容忍能力比较大,他追尾了,查他的责任,理赔一下就算了,假如说无人驾驶开一辆车追了前面的尾,这个车主一定要把车子拿回车厂让赔钱,就是人类对机器人犯错的容忍程度要求比较苛刻,对人犯错的程度比较宽恕,这件事情就导致了无人驾驶的难点,不公平,因为无人驾驶的车大家认为你不应该追尾,结果你追尾了。所以我觉得我们在研究人工智能的时候,我们对人工智能要有敬畏之心,不是简单说它总是弱的,它在一个特定领域,尤其在象棋和围棋领域可以是一个机器人同时战胜两个生物人,这是了不起的。最近我经常被问起,到处都在问人工智能很火,里面到底有什么东西,你们这个学科是怎么分类的,我想花一点时间讲一讲人工智能的内行和外延。

二、人工智能的内涵和外延

这里面有一个最大的问题,就是智能科学与技术跟人工智能相等吗?是同一个词吗?你们学会争论一级学科的时候为什么不直接用人工智能呢?我看到有一个群体讨论得很好,也在讨论这两个的差别,我在这里做一个简单的说明。

我个人认为,目前智能科学技术跟人工智能就是一个同义词,就是一回事,远距离看不要太介意它有多大差别。我们人工智能学会又叫智能科学技术学会,有的地方叫人工智能学院,有的地方叫机器人学院,有的地方叫智能科学技术学院,总体上都是搞智能,没有多大差别。那么如果一定要说它有差别,我们能不能做一个注解,它哪些地方有差别,我想跟大家讨论一下,下面的4个方面有一点差别,使得我最终选择了智能科学技术作为一级学科,而不是用人工智能作为一级学科。

注解一。Minsky当初提出ArtificialIntllignc,这个词在60多年的发展过程当中,无论在教科书里,还是在论文里,还是在著作里面,用的频度不大,所以我们作为学科认证的时候,没有把人工智能作为它的命名,因为这个词用的频度太少。当然这个词也没有注错,但是毕竟群体智能对这个词还不太喜欢,或者用得比较少,所以在中国的语境里面,认证一级学科的时候,我们希望用智能科学技术来覆盖更好、更稳,更符合我们中国的文化,这是第一个注解。

注解二。我们说人工智能,无论是图灵测试,还是后来人们认识的人工智能,都是受人脑认知启发的人工智能。如果不把脑认知搞清楚,人工智能就搞不清楚,因此人脑认知是生物智能,它比人工智能外延要宽,因此我们主张用智能科学与技术,要研究脑认知的基础怎么样启发我们研究人工智能。

注解三。人工智能研制出来的产品赋予社会之后,一定要跟人交互,一定要人跟它评价,所以人类跟机器人之间的交互认知不可或缺,因此这也超过了人工智能自身定义的范畴,所以我们觉得用智能科学与技术更好一点。

注解四。因为大家都在担心人工智能会不会超过人,如果用人工智能这个学科,就会把这个担心再扩大化。实际上所有人工智能的产品产物都是跟人分不开,更多出现的对抗是这一群人和这一群机器人同另外一群人和另外一群机器人的对抗,不会出现这样一个物理世界说人类在一边,机器人在另外一边,互相对抗,这是不可能出现的,有人把它叫做伪命题,就好像世界不会出现男人在一边、女人在另一边对抗一样,因为每个家庭都有男人和女人。因此从这个角度来讲,人工智能会引起大家一个担心,智能科学与技术不会引起这个担心,因为智能里面既有人的智能,也有机器的智能。所以我个人同意用智能科学与技术,我们学会都同意用智能科学与技术,我希望这件事情以后就不要再过多地议论它,就是一个同义词,基本都一样,说得宽一点就是一回事,不要再议论这个差别,我们主要是把人工智能推向前进,它的新经济、新引擎做出来,把它的加速器做出来就可以了。

下面我们讲一讲人工智能的内涵,也就是智能科学与技术的内涵,大概有4个核心学科。第一个学科,我们曾经叫做脑认知,后来跟生命科学家讲,他说脑认知太大,你们叫脑认知机理,后来说脑认知机理没有搞清楚,但是受脑启发,于是我们把它叫做脑认知基础。第二、第三分别讲机器感应与模式识别,是两个重要的核,一个代表图像视觉,一个代表语言听觉。年美国斯坦福大学计算机科学家费根鲍姆教授(提出了知识工程的概念,知识工程已经有40年的历史,而其他的历史都长过它,所以这4个二级学科的历史都很长。还有一个外延学科,叫做机器人与智能系统,下面我把每一个学科研究的内容用一张PPT大概概括一下。

第一个学科,脑认知基础阐明认知活动的脑机制,即人脑使用各层次构件,包括分子、细胞、神经回路、脑组织区实现记忆认知、计算认知、交互认知等活动,以及如何模拟这些认知活动。包括认知心理学、神经生物学、不确定性认知、人工神经网络、统计学习、机器学习、深度学习等内容。

第二个学科,机器感知与模式识别研究脑的视知觉,以及如何用机器完成图形和图像的信息处理和识别任务,如物体识别、生物识别、情境识别等。在物体的几何识别、特征识别、语义识别中,在人的签名识别、人脸识别、指纹识别、虹膜识别、行为识别、情感识别中,都已经取得巨大成功。

第三个学科,自然语言处理与理解研究自然语言的语境、语用、语义和语构;大型词库、语料和文本的智能检索,语音和文字的计算机输入方法,词法、句法、语义和篇章的分析,机器文本和语音的生成、合成和识别,各种语言之间的机器翻译和同传等。尤其是计算语言学和语言数字化取得巨大成功,例如信息压缩和抽取、文本挖掘、文本分类和聚类、自动文摘、阅读与理解、自动问答,话题跟踪、语言情感分析、聊天机器人、人工智能写作等,形成一大批井喷成果,中文信息处理与理解尤为突出。最近看到一篇报道,说俄语有点衰退,华语、汉语在全世界都在往上发展,我们的孔子学院立了大功了。

第四个学科是知识工程研究如何用机器代替人,实现知识的表示、获取、推理、决策,包括机器定理证明、专家系统、机器博弈、数据挖掘和知识发现、不确定性推理、领域知识库;还有数字图书馆、维基百科、知识图谱等大型知识工程。

人工智能的外延主要讲机器人与智能系统。机器人一个很大的领域长期以来找不到自己的学科定位,今天终于找到了,是我们的第五个学科,叫机器人与智能系统,包括工业机器人、农业机器人、医疗与康健机器人、服务机器人、太空机器人、国防机器人等等。对于智能系统就太多了,智能商务、智能农业、智能物流、智能政务、智能医疗、智能金融、智能法庭等。当前机器人和智能系统的普遍应用大大推进人文理工各个学科的科技进步和全社会经济、国防和人民生活的迅猛发展,我们长期奋斗,要把智能科学与技术纳入到本科来。我们说本科不牢,地动山摇,智能教育要回归本科。在国务院的智能发展规划里面,提出了智育教育要从中小学抓起,在大学更不能断层,不能只有研究生的智能专业,而没有智能的本科。

人工智能的内涵与外延大概构成这一个关系,核心是4个基础学科,外围是全社会辐射的一个应用学科,我用这个图大概讲一讲我对智能科学技术内涵和外延的认识,智能科学技术的5个二级学科发展历史如此悠久,奠基人阵容如此强大,包括诺贝尔奖、图灵奖获得者等,以及华人和中华文化在其中的作用如此明显,是许多其他一级学科难以比拟的。

三、人工智能以润物无声的柔软改变整个世界

最后讲一讲加速器。人工智能正以润物无声的柔软改变整个世界。我们习惯于原子能量工具的的开发,像原子能、原子弹惊天动地,恰恰相反,人工智能不是惊天动地的,它是润物无声的。创新驱动智能担当,不仅是材料、能源、传统制造和动力工具,更重要的是智能及智能工具,体现人的认知力、创造力,成为人类认识世界改造世界新的切入点,成为经济社会最重要的经济来源。科学技术的发展已经从认知客观世界、改造客观世界拓展到认识人类自身、认识人脑认知的新阶段,从发明动力工具拓展到发展智能工具的新阶段,智能是提升创新驱动发展源头供给能力的时代需求。

早在年,时任国务委员、国家科委主任宋健在题词中就明确指出:“人智能则国智,科技强则国强”。年李岚清就明确指出:“通过对脑科学的研究,若能提高人的学习认知效率,将是对人类的一大贡献。”年百度董事长李彦宏在天津世界智能大会上讲到一个观点,值得我们深思,他说:“中国在机器人非常有优势,创新不只是在大学,因为这里很大的市场、人才和资金。”所以我们到佛山来开产业峰会,有着大量的数据积累和经验训练,有千亿网民说同样的语言,有同样的文化道德标准以及同样的法律,他说了下面这句话尤其让我们沉重,中国不领先世界,真的说不过去啊。中国的人工智能不领先世界说不过去啊,不是骄不骄傲的问题,是说不说得过去的问题,是及格不及格的问题。年获得“中国政府友谊奖”的美国科学院院士、美国工程院院士约翰.霍普克罗夫特的观点值得我们深思,他说,“中国拥有全球六分之一的人口,却没有能够拥有全球六分之一的智能资源。”昨天吃饭有一个德国人,他说在美国华人排在黑人之后。我听了很沉重,因为大学里面的黑人教授我们华人看着有的觉得黑人当教授,他说我们华人排在黑人之后,我是不太同意他的看法,但是他是那样说的,那是他的认知,你要允许他的认知存在,我们中国的学者难道不应该想一想我们的责任担当吗?我们的智能是不差的。当前人的速度和智能产生的大数据正是训练机器人的素质和智能的前提条件,如果我们的智能不好,我们的机器人怎么有好的智能、好的智慧、高尚的情操?无论是人类智能还是人工智能,无论是个体智能,还是群体智能,无论是集中智能还是网络智能,都是在提升创新驱动发展源头的供给能力,是创新的原始驱动力量,是生产力中的核心生产力。

机器人将成为人类认知自然与社会、扩展智力、走向智慧生活的重要伴侣,引发了人人联网、物物联网的崭新形态,也改变着人们人类的生产活动、经济活动和社会生活。智能已经提升到国家战略的高度,智能科学技术对经济繁荣、国家安全、人口健康、生态环境和生活质量,对整个人类社会发展都会起到加速器的作用。

最近我在准备这个报告的时候,给自己提出一个问题,当前人工智能冲击最大的行业是哪一个?是哪两个?哪三个?甚至哪四个?我们可以做一个民意调查,大家一起来回想这个问题,我自己把我个人的观点拿出来,大家一起讨论。

我的观点:

第一个行业是制造业。为什么库卡会卖给美的?是德国人聪明,还是中国人聪明?因为制造工业已经走上智能制造的时代,制造业是世界经济的脊梁,当今汽车制造业又是制造业的脊梁,所以你到汽车整车厂商看看,到处看不到几个人。我国的汽车产销量已经连续8年居世界第一,工业机器人在汽车产业的应用尤其突出,你到哪个国家看它的制造,就看汽车业的制造有人还是无人,你们到德国博世的工厂看看,基本上没有人。但是年我国每万名产业工人拥有工业机器人的数量平均是49台,全球平均是69台,我们比全世界的平均水平要低,韩国就在我们旁边,韩国台,差别巨大。智能化新能源汽车正成为制造业的下一个风口,机器换人,势在必行。我和奥地利的专家坐在一起,他给我一个数字,他说在奥地利如今一个人的工厂或者企业占全国所有企业的三分之一。我们国家“夫妻店”是两个人的工厂,比我们还要低,我们中国人多,到底人多好还是人少好?所以对制造业的冲击是很大的,差距是很大的。三分之一是什么概念?我的一个学生现在搞创新创业,一下子找了20个人,我说员工不能多了,多了不一定好事。昨天我和广东省一个领导坐在一起,他说佛山人的脑袋特别灵活,我不知道怎么灵活。

第二个产业,教育。第一是制造业,第二我觉得是教育。我很感谢英伟达当我们这个大会的主席,因为英伟达对中国的教育做出了贡献。英伟达的芯片在很多教学里面都是它的实验平台,卷积神经网络算法,借助成千上万台的CPU+GPU服务器架构的超计算能力,超过大量数据样本做混合的大规模深度学习训练,可确定人工神经网络模型中的几十亿个参数,这样制作的智能芯片用于语言识别、人脸识别获得了显著成效。尤其是语音识别对人类的发展,现在可以翻译方言,已经进入到千家万户,这是什么概念?死记硬背、大量做题,机器一定做得比人好,所以对我们教育的挑战是从根本上的。所以怎么样看待教育?怎么样看待我们的教育的基本理念?我们的基本理念是什么?教育就是知识的积累,一个知识点、两个知识点一直积累,知识就是学问,知识就是力量,所以我们的教师传授知识,学生掌握知识,评价是考知识,尤其是高考。当机器人考过考生的时候,我们怎么看待这个教育?这个公式对不对?教育等于知识的累计吗?人脑中的存量知识,记忆的能力既有利于发展好奇心和想象力,这是大家都知道的,知识就是力量,后面的这句话是我说的,大着胆子在这里提出来,碰撞一下,也制约了好奇心和响亮的发展。知识是没有穷尽的,所以我说了这样一句风险比较大的话,人脑中的存量知识既有利于发展好奇心和想象力,也可能制约好奇心和想象力的发展。因此我个人认为人工智能对教育的改革将会做出有力的贡献。

什么是教育?我认为是培养3个能力,第一培养学生获取知识的能力。我认为过去知识的能力比一个人的知识存项还重要。第二个问题,决策的能力。其实我们每时每刻无论你是领导干部、官员,还是企业家,还是学者,你整年都在做决策,决策重要的一个就是选择,你的决策能力怎么样很重要,你来参加这个会议还是不来参加这个会议,这是你的选择,也是一种决策,要培养学生的决策能力。还要培养学习的创新能力,而不是积累的知识。知识的获取应该是主动地、积极地生长的,所以一个教师不要再怪学生太多的存量知识,而是让他怎么样获得知识。创新能力、决策能力体现了一个人的鉴赏力、判断力和思想。

因此我在这里大胆地憧憬一下人工智能引发的高考革命。将来高考什么样子,我做一个展望,第一次拿出来,我这个报告费了很大力气,怕这个词说过头,如果说过头,都是朋友帮我改一改。

第一步,以后的高考通过网络,考生对话自己感兴趣的高校,提交个人的中学学习情况,在家里就发生了,报名吗?第一步这样报就行了,一年12个月随时可以报,不一定哪一天是高考。

第二步,当被确定为候选人后,机器人对考生进行游戏式交互,全面确认考生具备的学科知识和能力。

第三步,考生被在线面试,机器人分析考生的特质和潜力。

第四步,考生通过虚拟现实,沉浸在该校该专业里学习和生活一段时间,畅谈感受,然后决定是否录取。

把高考变成一个生活很平常的事情多好,这样解放了一大堆的父母,我希望我们中国的高考是这个样子,行不行。后面这句话更重要,各个公司、公务员考试、各行各业人才选拔都可以这样做,不但是高考,腾讯、英伟达新进职员都可以这样搞,人力资源就相对轻松了,这就是人工智能对教育的变革。

云计算、大数据和人工智能成就了慕课、微课、反转课堂和个性化教学等交互认知手段逐渐把教师转型为教练,今后的大学里会出现更多的教练机器人,替代人类教师。

第三个行业,我个人认为冲击最大的是医疗。我70岁了,医院里留下了几十张医疗影像图,为什么不拿这个图像识别提取技术去识别医疗影像?因为我们看病找医生真的是一个随即事件,医生开的药你拿回来当圣旨,其实是不是适合你很难说,为什么不找一个没有情绪而有更多知识的机器人看病呢?为什么不用专门的技术把它算出来你是癌症早期,还是一个良性瘤呢?我觉得医疗太重要了。

第四个行业,我认为是金融。因为所有的客观事件里边,唯独把数据化做得最好的就是金融业,他们全部是用数据说话,金融挖掘、对冲、基金高级分析师完全可以用机器人来替代。全是用数据挖掘。

今天我抛了一个话题,请大家思考,人工智能对当前垂直行业冲击最大的是制造业、教育、医疗和金融。

我们看看愿景。我们这个星球上,机器人、新人类正发展人类的伙伴,它们有智慧、有个性、有行为能力,甚至还有情感,机器人给人类带来的影响将远远超过计算机和互联网过去几十年间已经对世界造成的改变,像我们这些老头子对这几十年的改变已经感到惊心动魄了,世界变化真的太快,我们不应该在一个地方,我们应该想一想未来。我们将成为机器人的最大市场,机器人是制造业皇冠顶端的明珠,是国家科技创新和中高端制造业的重要标志。只有原创性的智能科学与技术,才能使我们成为机器人的产品和机器人市场规则的重要制定者和主导者。到年争取我国每1万名产业工人拥有工业机器人数量达到台,还没超过韩国,农村城镇化导致中国农民急剧减少,无人拖拉机、农用无人机、背包机器人和收割机器人将成为新一代“农民”。要把我们现在20%的农业人口降到3%甚至更早。黄牛退休、铁牛耕地、农民进城、专家种田,医院的微创手术机器人近一半国产化,在全社会普及使用形形色色的服务机器人,翻译、新闻报道、助理、客服、交易、会计、金融分析师、司机、家政、咨询等被人工智能代替,我国老年人、残疾人和儿童平均每人拥有一台形态各异的服务机器人。

人类的发展史,就是人类学会运用工具、制造工具和发明机器的历史,机器使得人类更强大。今天,人类正在发明越来越多的机器人,智能手机成为你的忠实助理,轮式机器人也会比一般人开车开得更好,曾经的很多工作岗位将会被智能机器人替代,但同时又自然会涌现出更多新的工作,人类将更加尊严、优雅、智慧地生活!

人类始终善于更好地调教和帮助机器人,善于利用机器人的优势并弥补机器人的不足,或者用新的机器人淘汰旧的机器人;反过来,人类还能够利用机器人提升自身的智慧和能力,机器人一定会让人类自身更智能。各式各样人机协同的机器人,为我们迎来了人与机器人共舞的新时代,伴随优雅的舞曲,毋庸置疑人类始终是领舞者!

主持人:感谢李德毅院士生动精彩、高瞻远瞩的主题报告,为我们吹响了人工智能大发展的冲锋号。

孙富春:《人工智能与产业腾飞》

来源:中国人工智能学会

10月12日,第七届中国智能产业高峰论坛在佛山开幕,在第一天的主论坛上,中国人工智能学会认识系统与信息处理专业委员会主任,清华大学教授孙富春发表了主题为《人工智能与产业腾飞》的精彩演讲。

孙富春教授深入浅出地回顾了人工智能的前世今生,并从产业的角度介绍了人工智能与现有产业如何深度融合,实现产业链条的形成以及制造业的腾飞。在报告中还为与会嘉宾展示了其团队的科研课题和科研成果,并对人工智能的未来进行了思考和畅想。他提出,我们应构筑我国人工智能发展的先发优势,加速产业建设,加快迈向“中国制造”。

中国人工智能学会认知系统与信息处理专业委员会主任、

清华大学教授孙富春

以下是孙富春教授的演讲实录:

孙富春:尊敬的各位嘉宾、各位同仁、大家上午好!我首先非常感谢学会给我跟大家交流的机会,我汇报的题目是人工智能与产业腾飞。

人工智能最早的时候,在古代哲学里是一个很重要的问题。最早出现在多年前的诸子百家,荀子在《正名》篇里面第一次描述了什么是智能,我们来看一看。它是这么讲的,“知之在人者谓之知。知有所合谓之智”,什么意思呢?人天生就有一种认知的能力,把这种认知能力在社会实践中就能产生智慧。第二段话就是“能之在人者谓之能”,就是人还有一种能力,就是求变和创新的能力,把这种创新能力在社会实践中就能产生才能。那么,什么是智能呢?就是将人的认知能力用于变革和创新世界就是智能。

我们再看看Wbstr字典里面是怎么说的,它说智能是学习和求解问题的能力,它是解决新问题、理性行动与像人一样行动的能力。我们都知道年在麦卡锡在美国达特茅斯市的研讨会上宣布了人工智能这门新的学科。那么,在这个会上人工智能是怎么定义的呢?它说人工智能是制造智能机器的科学与工程,特别是智能计算机程序,它与使用计算机、理解人与智能的内生动力有关,但智能并不局限于生物学观察的方法。

谈到人工智能我们不能不提到图灵,图灵在年在《计算机能思维吗》提出了著名的图灵测试,就是人和机器背靠背,让人提问题,机器回答,如果有30%的机器回答让人感觉到是像人回答的,我们就说这个机器具有智能,他建立了人工智能的思想基础。我们经常讲是计算技术推动了人工智能的发展,用哪些计算呢?首先是云片计算机,是它主要推动了现代人工智能的发展。还有哪些计算呢?网络计算、互联网技术推动了群体智能的发展。还有生物计算,以生物计算主导的人工智能,一定是未来人工智能发展的重要方向。我觉得现有的智能是沿着这三条线索分别在发展,同时部分有交叉,但是以独立的发展为主。

我们过去讲人工智能有两大范式,一个是符号主义,就是利用数学里的数理逻辑,通常称它为知识驱动的人工智能。第二部分我们讲是联接主义,就是神经元,一直到现在的深度学习,称为数据驱动的人工智能。人工智能的第三范式是什么呢?我们认为是神经机制驱动的人工智能,包括今天李院士讲到的深度学习,最早是年,人们对猫视觉皮层的发现而建立起来了。今天的超限学习机,包括强化学习都是基于脑科学和生物学的发现,他们就是基于神经机制驱动的脑认知。

人工智能有很多的领域,我们觉得这段时间发展比较多的应该是机器学习和机器感知,机器感知包括语音处理技术、图象识别技术等等。目前人工智能已经应用在自然语言处理、知识表达、自动推理、机器学习、计算机视觉和机器人。我们经常谈到三起两落,这里面我想提出一个观点,就是年以后,即深度学习提出以后,它是通过数据自主的提取特征,我们说它叫智能,之前的人工智能发展我们认为叫人工,即深度学习之前只有人工,深度学习之后有了智能。大家说人工智能将来对社会发展有哪些影响呢?,机器犯错了谁担责呢?社会结构改变了,机器伴侣年美国人做出来了,这里我们提出来一个很重要的问题?就是人工智能是不是改变世界的第三个苹果?我们讲第一个苹果是亚当和夏娃偷吃的那个苹果,第二个苹果就是砸在牛顿头上的苹果,牛顿的创造不光是万有引力,还包括微积分,我们现在研究问题都通过数学的办法、科学的办法去做,他改变了世界。第三个苹果,是图灵吃掉了的毒苹果,它改变了社会,从此我们社会进入了人和机器之间共存的社会,我们过去人和机器之间的关系是单向的关系,机器服从人,人工智能时代人和机器之间应该是一个双向的关系,机器有感知和决策能力,有认知能力,可以跟我们一起工作,协同完成某项任务,我们今天讲到的人机混和智能就属于这个方面。最近有一本书,是王飞跃老师的学生王晓翻译的,我还为该书写了一个序,就讲到了社会机器问题,这是一个新的社会生态,人和机器共存的社会。

我们再谈深度学习,深度学习是年约翰霍普金斯大学的DavidHubl和TorstnWisl教授一个重要的发现,他们发现了人的视觉信息处理是分级的,这个发现大大促进了人工智能的发展。人的视觉处理分为V1到V4区,V1是一些简单细胞,复杂细胞和超复杂细胞进行线条边缘的提取,到V2就形成了部件,再经过第三区形成轮廓,最后形成物体的表征和识别。有人会问为什么深度学习那么多层呢?是因为不同背景和图像分辨率下,不同人完成这几个功能,需要的层数不同,比如提取边缘,有的人用20层,有的人用40层。为了得到更好的表达和识别能力,层数有时很多,汤晓鸥团队在年Imagnt比赛中,用了层。

我们说深度学习是一个端到端的学习,它跟我们传统的模式识别有什么不同呢?就是自动选择特征。深度学习的产品现在应用在移动终端里面,像苹果的Siri,微软的智能安全工作空间。问一下什么是“深度学习”,只要同手机说一下,SIRI马上会告诉你强化学习的意思。强化学习刚才我们李院士讲的比较多,我这里就不再多说了。

我们看到阿尔法狗把所有围棋高手都打败了,那么大家会产生一个映像,人工智能将来不得了。但我认为以深度学习为代表的人工智能存在这么一些缺陷,第一个是端到端黑盒子,网络中存在大量的复杂非线性变换和大规模神经元连接,少量的随机扰动就会导致最后结果的剧烈变化,其行为和表现难以理解和合理解释,很难对模型的行为进行有效分析,无法找到原因并进行修正。比如美国人用深度学习,结果把一个黑人识别成一个猩猩,这种笑话是不少的。缺少可解释使得现有人工智能技术很难应用于医学、国防等可解释性异常重要的领域。第二就是依赖大数据,没有数据怎么办?能耗大,计算量大,阿尔法狗用了块GPU,我不知道块GPU要多少钱,我感觉应该是6个亿到8个亿。模态单一,阿尔法狗只能下围棋,不能下象棋,哪怕把规则改一下他就适应不了。其实智能里面还有一个非常重要的东西,就是人通过学习会产生知识的涌现,这个涌现具体体现在哪里呢?我们这里有很多的博士生导师,比如一个博士生两年半要开题,四年要毕业,怎么现在还没有发表文章?有人说你别着急,半年时间全出来了,这就是积累到一定的程度就会产生一种知识的升华和涌现,这是阿尔法狗所没有的。

我们提出这样一个观点,我们认为在深度学习的之前的模式识别是算法加特征,这些特征是人自己选定的,比如说颜色特征,纹理特征,几何特征等等,数据加进来干什么?数据加进来就是供自动提取特征。大家都知道神经网络学习,如果隐层单元的数目大于输入维度,问题所需要求解的最优参数就转化为不适定问题。怎么办?增加数据,把这个问题解决了。小数据行吗?通过正则化方法和对抗式网络得到一定程度解决。我们再看,现在的深度学习只用到了算法和数据,其实人在观察事物的过程里面还用了一个很重要的东西,就是模式。深度学习这两年有了很大的进展,一个重要的因素就是视觉、听觉、触觉,脑电都可以用二元矩阵表示,深度学习可以推广到这些领域。人在观测事物时,观测模式不一样,白天大多用到视觉,操作物体用触觉,有时把这几个感知信息融合在一起。好,我们再看看行为。行为是人工智能一个非常重要的部分,但是现在的深度学习没有做到这一点。我们再向上看,我们研究了特征,我们需要什么?概念,这就是可解释性的问题。此外,我们还需要知识和模型。我们看看现在的深度学习仅仅做到了我画的这一小块,而且还不够完善。

刚才强调一个很重要的问题,需要很多数据,如果没那么多怎么办?就是小样本表示学习是目前非常重要的一个风向,怎么做呢?我需要大量的数据,这实际上是一个正则化的问题,我们通过正则化,通过流形学习可以改变这个问题。还有一个问题很重要,就是如何产生数据。学自动化的人都知道,模型可以产生数据,如果将模型的产生式方法和机器学习的判别式方法结合,有望解决数据的产生问题。这就是今天强调的对抗式学习,它是把产生式方法和鉴别式方法结合在一起,通过竞争产生新数据,这是目前小样本学习里面非常重要的一个方向。

符号概念,关联网络的概念这是今年谷歌Dpmind公司提出来的,它直接通过这样一个网络,通过概念的组合来形成从感知到概念的转化。这种新的符号-概念关联网络,实际上打破了纯粹模拟人脑神经网络生物构造的计算方式,从模拟人的“组合性”思想中另辟蹊径,从而取得了对抽象概念这一特定问题的进展。

图像理解最近大家做的比较多,这是我一个博士生在做的工作,从任意给定的图像,可以学习图像的自然语义理解,实现了从单一目标的概念,到整体句子结构,最终实现图像理解的过程,这是一个对图像更深层次的理解过程。我们可喜的看到在今年温哥华的IROS会上面,李飞飞也报告了怎样从感知形成理解,这就是刚才讲到的从特征到概念。

生物计算怎么样?存储量大、运算快,能耗特别低,DNA计算是普通电脑的十亿分之一;存贮量大,1立方米的DNA溶液,可以存贮1万亿亿的二进制数据。运算快,十几个小时的DNA计算,相当于所有电脑问世以来的总运算量。我们再看看量子计算机,这个是今年的中国科学技术大学发布的量子计算机原形样机,一台操纵50个微观粒子的量子计算机,对特定问题的处理能力可超过目前最快的“神威·太湖之光”超级计算机。加拿大神经外科医生WildrPnfild的实验结果说明大脑对感知数据的记忆是全息的(即包含我们生活的所有细节),而并不是单纯的一幅图像、一种声音或一种感觉,即使是对通常的事件。我认为未来的人工智能一定是这样一个图谱,从下面的硅云计算到生物计算(或者叫碳计算),最后到神经机制驱动下的强人工智能。这里我提出的观念可能跟许多人不一致,可以讨论。

人工智能的产业在中国现在是不断的兴起和发展,中国人工智能产业的规模年达到了亿元,增长率达到了43.3%,年我们国家达到了亿人民币。中国跟美国的差距我们看一下,从人工智能的企业数来看,我们大概有两年的差距,但是从投融资角度来讲我们差距还比较大,年美国是亿,中国是亿。我们再看看中美在人工智能各个领域,像自然语言理解、机器学习应用、计算机视觉和图像、技术平台,无人机等等,这方面我们跟美国还是有一定差距,尤其在自然语言理解、机器学习这方面我们差距比较大,我们国家在年的专利增长非常快,人工智能目前用在哪些地方呢?医疗、汽车、消费电子、电商、安防等等。

这是一个未来十年我们可以展望的,从现阶段的大数据、感知、理解、机器人、自动驾驶里面,近期的主要是互联网的应用、电商、商业流程的自动化、摄像头、视觉语音语言手势的应用、工业机器人等,未来3—5年可以看到辅助自动驾驶、商业机器人、VR和AR技术,分布式传感器技术将在中国的产业方面有大的发展,包括人工智能+计算构架、算法框架加传感平台;未来5—10年,自然语言理解成为我们万能的助手,甚至请一个外国人讲课,你们听到的是按他的语调的中国话。我们可以展望的未来十年可以达到全天候、全工况的无人驾驶。

我们今天这个报告是在广东做的,这里面有很多广州、佛山的嘉宾们,你们一定特别关心自己家乡的产业。最近香港、广州、佛山、澳门和深圳等城市提出大湾区的概念,实现湾区经济。我们可以看到像广州北部、佛山、中山这边主要是技术密集的产业带,以装备制造业和农业为主;从东岸来看,广州东部、中部、深圳、东莞地区主要是新兴产业,高技术产业发展非常强大。我们再看看沿岸这块,主要是惠州、珠海和江门这一块主要是先进制造业和现代服务业。现在实现湾区的概念就是要实现湾区的融合,东岸、西岸、沿岸的融合来打造智能制造。人工智能在各个行业处于爆发状态,像芯片、智能机器人,智能社交、智能交互和智能教育,下面我们来看一看。

人工智能芯片主要包括GPU、PGA等等,人工智能时代的“晶体管”横空出世。英伟达是深度学习芯片的龙头跨国公司,我们沈总在这儿,英伟达推出深度学习芯片,TslaP能够实现数百CPU服务器节点性能,数据处理速度是NVIDIA此前Maxwll架构显卡系列的12倍。我们再看看华为,给咱们中国人长脸的,最近推出的麒麟,我不知道具体什么含义,但是念起来特别有气势,咱们自己的芯片比苹果的还好。这是今年因特尔公司推出的IntlMyriad2视觉处理芯片,该微型芯片包含AI加速器,它的效益功率比也超越了当时的所有同行。使用的深度神经网络(DNN),比如跟踪或监控摄像机。功率效率,或每瓦特可以获得的性能数量获得了很大的提升。

机器人是人工智能产业的一个非常重要的支柱,未来十年里要大力发展机器人,它包括了执行、装置、控制、感知系统等等,其实我今年参加了《国家机器人发展报告》的撰写,明显感觉到我们国家在一些传统弱项方面进步仍然不是很大,包括像减速器、高密度高精度的电机、驱动系统,还包括一些分布式传感器。这是我国研发的仿人机器人,这是京东做的物流机器人。我们国家现在已经形成了门类比较齐全的机器人研发基地,从东北一直到我们广州。

下面介绍一下我的课题组做了什么?认知传感。这是我们课题组开发的数据手套,可以采集操作过程中接触点的力,包括关节弯曲的角度,我们甚至像把小提琴手指法和接触力的变化都记录下来。这是我们在世界机器人大会上展览的数据手套,相关理论成果获得了国际会议最佳论文奖。人工皮肤是我们课题组做的比较多的,这方面我们有一些体会,这是一个国际自然科学基金的重大仪器项目。当初我们觉得人工皮肤就是胶布贴在灵巧手上,现在很多人有这种观点,但是我们后来的研究发现不是,这是我们通过发现人在操作过程中,力一定是以操作点为中心向上周边逐步减弱的分布,用这种概念设计的触觉传感器应该是这样的布局。此外,我们研究发现触觉编码同灵巧手的构型和触觉分布有关,单纯的一块胶布,贴在手上,工作几个小时胶布没有了。我们最近提出了人工手指的概念,手指有表层、有真皮、有传感部分,表层的分辨率是可以变化的。这就是我们研发四模态传感器,可以观测物体表面的纹理,你看这个纹理非常的清晰,还可以测量分布式正压力、滑觉和温度觉。这是我们跟国际上相同传感器的比较,这是我们发布出来的第一个四模态的芯片,用在了机器人上面。软体也是我们这两年做的比较多的,这是我们世界机器人展出的软体的操作手,时间关系就不能放太多了。视触融合是一个比较难的问题,我们看看不同模态融合会出现什么问题?第一个尺度不一样,视角不同,还有采样数不同,你看这里视觉的采样数比较多,而触觉很少。有的时候还出现模态的缺失,这种情况下怎么做融合呢?我们提出了一种稀疏编码与深度学习相结合的办法。

这是基于经验学习和强化学习的机器人灵巧操作,这是我们在年提出的多目标检测算法,这个算法后来被新知元转发,年推广到了多尺度的多目标检测,可以用在光线变化较大和尺度变化较大的情况。这是我们做的一个很重要的工作,把触觉编码方法用于人的视觉编码里,奇迹出现了,编码精度更高,学习效果提高了6到10倍。由于上面这些积累,我们获得了年灵巧操作的世界冠军,今年由于五个参赛学生没有拿到签证,靠两个老师和INTEL的王涛参加比赛拿到了第三名,也算是为国争光了。

大家都知道自动驾驶,我们可以看到这张图谱里面,世界上的各大的汽车公司都在开始做辅助驾驶到全辅助驾驶,他们都有一个重要的目标,宝马年就能出现全工况的驾驶,通用、福特是年,所以我们将迎来无人驾驶的时代,这是李德毅老师做的非常好的工作,我就不说了。这是宇通大客车无人驾驶的情况。

智能安防是这两年我们国家进展比较快的,我国已建立了天网系统,像北京就有多万个摄象头,一旦进入一类和二类摄象头,你的图象就已经在公安部个人资料进行匹配,目前识别率可达到93%。另外我们还可以用到人的生理特征识别,还有行人检测,车辆的检测里面,包括人群的聚集,一些危险情况的分析。社交网络这两年比较快,主要是手机终端和互联网的出现,应用包括用户画像,你的年龄、兴趣、性格,包括你的诚信度都可以通过社交网络估计。移动终端大家可以看到了,从手机到PC机到人工智能终端,这里人工智能是核心,像语音技术、图象识别技术,深度学习技术都集成在这个手机上面。具体来讲,我们的手机中已经从集成运动传感器,到了语音识别,又到了生物识别,现在又到了VR,将来买衣服可以通过手机感受到它的质地和飘柔感。智能制造是人工只能产业的重要部分,今天李院士特别强调智能制造太重要了,尤其在广州。这是智能制造领域的一个很重要的发明,Bigblly垃圾桶集太阳能、物联网、高效压缩机为一体,垃圾快倒满时,压缩机会在40秒内将垃圾的体积压缩到原来的五分之一,垃圾桶快满时候自动联网发送垃圾桶已满及地理位置等信息至垃圾处理中心。处理中心的系统根据各个垃圾桶发回的数据分析,规划最佳回收路线和时间。

智能教育刚才李院士讲的比较多,我就不多说了。

我们讲讲未来发展,人工智能的发展已经从弱人工智能到了以大数据和深度学习为主的弱人工智能,最后到神经机制驱动下的强人工智能。我个人认为,人工智能将来最大的产业是算法加软件和数据;第二是芯片,第三是智能教育,第四是共享平台。将来你家的冰箱,电视机都是共享的,你将来从广州搬到北京去什么都不用带,一切独有共享公司负责。另外还有产业服务,典型代表就是百度的天智系统。

下面用这首诗总结一下我今天的报告,叫人工智能新产业。

人物相融创智能,统归天地启明灯;

硅云计算深宽度,生物全息横纵腾;

先辈艰辛功业建,后生勤奋远程征;

智能产业添金翼,勇创高峰立志登。

今天我们佛山的朋友,你们一定在想我们对你的智能峰会那么支持,你对我们有什么表示吗?有,我把这首诗献给佛山的朋友,名字叫贺佛山人工智能产业峰会。

佛山千古耀穹苍,忠义群英誉四方;

昌盛腾飞增灿烂,繁荣跨越铸辉煌;

诗城浪漫名千里,水镇多情润万乡;

业界圣贤今盛会,智能产业启新航。

谢谢大家!

施水才:《大数据和人工智能发展的思考》

来源:中国人工智能学会

10月12日,第七届中国智能产业高峰论坛在佛山开幕,在第一天的主论坛上,北京拓尔思信息技术股份有限公司副董事长、总裁施水才发表了主题为《大数据和人工智能发展的思考》的精彩演讲。

在演讲中,施水才先生从自身多年大数据技术和服务领导者角色的角度,介绍了旗下利用大数据技术推出的数据增值服务平台,并得出了“数据——信息——知识——智能——智慧”的价值提升路径。从大数据、云服务到人工智能,施水才为嘉宾铺设了一条如何利用大数据去实现人工智能增值的道路,有很大的参考价值。

北京拓尔思信息技术股份有限公司副董事长、总裁施水才

以下是施水才先生的演讲实录:

施水才:大家上午好。非常感谢中国人工智能学会邀请我在大会上做分享报告。现在全国人民都在谈人工智能,但是在我心目中,中国人工智能学会才是我们国家人工智能学术殿堂,所以内心是非常忐忑的,我问自己,我有什么资格站在这里给大家做报告呢?因为我既不能说自己不懂技术,也没有一千个亿,可能是我们过去20多年也做了一些工作,包括搜索技术、文本挖掘技术、大数据技术及应用,并且是国内第一个以自然语言处理为主要高年的A股上市公司。今天我想给大家分享一下对于大数据和人工智能产业的发展思考。

我想讲的第一点是我认为把大数据和人工智能产业进行一些比对,把这两个事情放到一起比对是非常有意义的。第二点想讲的,到底我们是人工智能+行业,还是行业+人工智能,谈一下我的理解和认识,第三点我觉得我们需要突破人工智能现在非常强调3个要素,就是计算能力、数据和算法,我认为对于未来人工智能的研究和应用,仅有这三点是不够的,应该有其他重要的因素需要加进来。第四点我想探讨的是我们现在在人工智能的几个方向里面,哪一些还有大的机会,来让我们创新、创业、赚钱,最后讲一讲我们自己基于NLP平台的一些人工智能应用实践。

对比大数据和人工智能产业的发展是有启发的。因为人工智能的发展和数据密不可分,而且目前人工智能发展所取得的成就大部分和大数据密切相关,因此观察大数据产业的发展对人工智能产业发展很有意义,同时我们认为数据驱动的商业(DataDrivnBusinss)比智能驱动的商业更符合产业的本质,实际上大数据产业的落地能力是强于人工智能的,所以大数据产业发展中出现的问题对人工智能产业发展很有意义。

大数据的发展有几个方面对人工智能的发展有启发。包括数据的重要性,数据质量的重要性,应用场景的重要性,行业知识的重要性、政策法规的重要性,以及变现的模式的参考意义。大数据从年在美国白宫首先开始制定一些政策,到年我们国家开始热起来,这几年出台了很多政策规范,甚至搞了很多园区,但是我们现在发现整个大数据产业仍然处于非常早期的阶段。为什么这么说?第一,它在哪些方面推动了产业的变革?第二,谁赚到钱了?现在基本上只有互联网的大公司通过推荐精准化营销、电子商务等等赚到钱了,但是我们大量从事产业大数据的企业大部分还在烧钱,行业也没有从大数据中收益和发生大的产业变革,仍然处于非常早期阶段。人工智能也是一样的,大部分的AI企业仍处于投资和烧钱的阶段。

再细化一下,我们看看影响整个大数据产业发展的4个要素:数据开放、技术研发、产业生态、法律法规。总体上讲,目前大数据产业发展非常早期,仍然是大数据投资和创业的良机,在产业生态上主要的特征是垄断和新的数据孤岛,大数据创业公司仍需3-5年才能实现规模盈利,大部分在持续的烧钱,-年产业整合趋势明显。在数据方面,互联网大企业的数据霸权主义、政府数据公开的艰难(在国际上很落后,60名开外),行业和企业数据的难以获得以及灰色数据灰色产业链,以及个人隐私问题都非常的突出,我们国家每年数据交易的市场是个亿以上,但是合法的只有10%左右,90%都是灰色数据链,所以导致最近公安查,说很多大公司被抓起来了,个人隐私问题非常突出,要破解数据的魔咒,需要在法律法规和产业生态两个角度去破局。

数据的质量问题很大,最近我们在做一个国家项目,发现这个数据的问题很大,行业的数据很难开放和共享。很多数据可能是无用的死数据,如工商企业数据中的僵死企业数据,比如说大家经常提到的,全国有七千万工商企业,其中三千多万的中小以上在运营,每天新创企业几万家,倒闭企业也有几万家,但是如果倒闭数据一直这里面,这些数据还有什么意义呢?再说互联网数据的低质量和低价值密度,第二互联网数据非常大,但是互联网数据有2个问题,第一质量很低,第二价值密度很低,对于大数据来说价值密度低一点没有关系,但是对于依赖于机器学习的人工智能来说,数据质量的重要性是个大问题。数据的另外一个问题是数据标准和规范不统一。

除了数据及数据的质量外,应用场景是非常重要的,大数据的4个V不重要,Hadoop/Spark不重要,重要的是应用场景,那么对AI来说也是一样的,因为实际上我们看到大数据和AI的热门应用领域实际上重合度很高:金融、健康医疗、教育、在线广告、情报分析……。应用场景和行业密切相关,主要是垂直化和行业化,一旦进入行业,你就会发现,很多问题来了,所以我们说人工智能发展仅仅强调数据、算力、算法是不够的。

政策法律也非常重要,在互联网时代,我们国家互联网发展为什么快?其中一条人多,人口红利,还有一条非常重要规则没那么严,政府和行业对互联网的支持比较多,企业层面有时甚至有点蔑视规则。但是大数据和人工智能时代,像互联网早期那样野蛮发展已经行不通了。现在数据开放和隐私保护,从个人隐私到人身安全,因为搞不好会死人的。

现在无论是大数据还是人工智能很多创业和创新围绕技术层面,但是技术变现是非常困难的。比如大数据技术现在有多种,比较成熟了,基础平台的竞争什么激烈,已经从拼技术到拼生态的新阶段,通用的平台化的大数据基础平台,是开源加上几家平台型企业的天下,创业公司想要在平台上和他们PK机会很小,所以大部分的中国大数据企业应该侧重于垂直行业的大数据应用。人工智能也是一样的,哦平台型的机器学习算法肯定是Googl、Facbook、微软以及国内BAT华为等这样的公司的主战场,所以大部分的AI企业还是应该把重点放在应用上。变现的核心是场景+技术+数据,要以解决垂直领域的一个痛点问题为核心,在数据方面要打通内部数据和外部数据,要形成闭环,闭环不是什么都搞,更不是都自己搞,更强调场景驱动和融合。所以大数据的变现模式对人工智能来说也是一样的。人工智能变现的关键同样是:场景+技术+数据,计算能力更强,数据质量更高,场景业务的目标更专,并且增加了机器学习和自动化能力。场景是业务目标+业务模式+行业知识。

小节一下,通过对比大数据和人工智能产业的发展,我们可以得到如何几个结论:人工智能产业仍处于非常早期的阶段;数据的重要性不容置疑,但问题多多;应用才是驱动力;垂直行业才是大部分参与者的机会所在。

今天想和大家分享的第二点是关于到底是“人工智能+行业”还是“行业+人工智能”。我的基本看法是行业+人工智能仍然是智能产业发展的主流。我们觉得“行业+人工智能”可能占到90%,“人工智能+行业”可能只占到10%。区别在哪里?人工智能+行业是创造新模式,更多表现在以前这个行业不成熟,或者没有现有的很好的商业模式,比如像自动驾驶;而行业+人工智能是对用人工智能技术对行业进行变革和改造,要么降低成本,要么提高决策和管理水平。比如法律啊、教育啊、金融啊。很对AI的新技术在消费领域和工业领域的应用也不一样,比如消费领域的人脸识别、美颜相机在工业领域可能是身份认证、银行开户、安防监控、商业分析;消费领域的语音识别和输入法技术可能是智能客服应用,深度学习和图像识别在工业领域可能是智能分拣和安检应用。

如果90%的机会在于“行业+人工智能”,那么钱、数据和算法就是不是决定性的因素,如果钱是决定性的因素,那未来也就不会有什么创新了。行业知识和行业专家是壁垒,所以说大公司压迫下的创业公司仍具有广阔的空间,那么那些行业将实现AI爆发或者说受到冲击最大呢?刚才李德毅院士说的很好,四个行业,制造业、教育、金融、医疗,我非常认同,我觉得最关键的是要看两点,一个是行业本身的成长空间,就是说是否足够大,是否未来有成长性,另一个是这个行业是否依赖于人的经验和知识,依赖越大的,被人工智能取代的需求就越大,比如医生,主要是专家太少。我们投资过的一个项目,是病理切片癌症诊断,据说全国能看病医生也就不到1万个,而合格的专家只有不到个,你看需求多大,大数据和人工智能可以解决这个问题,IBMWatson的思路也是一样的。另外就是律师和金融行业的人,主要是太贵,律师一小时多少钱,金融行业动不动几百万,其实你用了大数据和人工智能后发现,其实他们不值这么多钱。刚才李院士说制造业我国使用机器人的数量远远落后韩国日本等,主要原因我觉得还是成本问题,所以我认为最紧迫的可能不是家政机器人之类的,而是取代高成本的人力以及人力不够的行业。

人工智能产业还有一个特点比较鲜明的。就是他是Embddd,嵌入式的,所以可以说AI技术是一种EnablingTchnology。未来所有的企业都应该是AI企业,所以你看现在包括Googl百度都说自己是AIAllIn。

今天想和大家分享的第三点是关于人工智能的三要素问题。现在讲人工智能,就和大数据的4个V一样,几乎每个专家都要将人工智能三要素,数据、计算力、算法。但是真的够了吗。我认为不够,为何什么说呢,大家看看,人工智能正从计算智能、感知智能向认知智能及创造智能的方向发展,认知智能包括理解、运用语言的能力,掌握知识、运用知识的能力,在语言和知识上的推理能力,主要集中在语言智能即NLP。到了认知智能这个阶段光有数据、算法、和计算资源我认为不够的,需要什么?我认为重要的一点可能还需要很多的知识,需要有知识图谱等别的很多东西,所以知识可能是第四个要素。从另外一个角度,目前人工智能三要素中对应用场景没有论及,所及基本还是从技术层面来考虑问题的,我们认为不够,所以应用场景的问题是否可能成为第四要素?再者人共智能必须考虑人的问题,是人工+智能,人机协作的问题在很多AI场景中必须考虑。所以我提出一个问题,如何寻找人工智能的第四要素?

今天想和大家分享的第四点是人工智能的重点机会和方向问题。这就是以自然语言处理即NLP为代表的认知智能。目前AI硬件领域的投资很厉害,也是大公司的天下,比如GPU,FPGA,ASIC芯片等,在视觉领域的投资,也很多,特别是图像识别啊、语音识别啊,诞生了不少独角兽公司,技术进步也很快,但是太多了。不是未来的投资方向。而以自然语言处理为核心的认知智能,目前在国内的投资及发展和美国有不少的差距。根据腾讯研究院的报告,美国在NLP领域的新创其实差不多是中国的3倍,根据乌镇智库的报告,-年,全球累计新增自然语言处理企业数据达到家。9年以来,美国每年新增的自然语言处理企业占当年全球新增企业总数的比例保持在40%左右,根据调研公司CBInsights近日公布的“最值得



转载请注明地址:http://www.weidadezzz.com/kltl/9043.html
  • 上一篇文章:
  • 下一篇文章:
  • 热点文章

    • 没有热点文章

    推荐文章

    • 没有推荐文章